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1 Introduction

1.1 Sonoluminescence

The remarkable discovery that oscillating air bubbles in water can emit light
has ignited widespread interest in sonoluminescence (SL), especially after
the beginning of the 90’s discovery by Gaitan [1] of single-bubble sonolumi-
nescence (SBSL), which allowed the experimental parameters to be easily
controlled. Under certain conditions the acoustic energy of the driving ul-
trasonic sound field is converted into light through the highly non-linear
oscillations of the cavitating bubble. The physical conditions needed for
light to arise through bubble mechanics are very extreme and studies made
on the subject during the last ten years have reported bubble temperatures
in the order of 25 000 — 100 000 K, pressures reaching millions of athmo-
spheres and pulse widths of less than 100 ps [2].

The SBSL bubble is assumed to consist mainly of a noble gas [3, 4]
which concentrates inside the bubble before it begins to emit light. The
bubble oscillates several tens of thousands times a seconds in sync with the
driving sound field and emits a short pulse of light every cycle. During
the rarefaction phase of the driving pressure the bubble grows to about ten
times its equilibrium radius. The compression phase causes the bubble to
undergo a very rapid collapse. At the first stage of the collapse the bubble
heats up adiabatically (Fig. 1a). When the bubble wall reaches supersonic
speeds, shock waves are launched towards the center (Fig. 1b) where they
focus and heat the interior further. The shock waves reach the center and
reflect (Fig. 1c) heating the bubble to temperatures high enough for the
bubble to emit a short pulse of light (Fig. 1d).

To the best of our knowledge the light is radiation from cool dense plasma,
but several different light emitting mechanisms have been proposed. The
experimental data fits both 100 000 K black body radiation and 25 000 K
bremsstrahlung radiation [5]. Recombination radiation of electrons with
ions or molecular radicals has also been proposed but probably only plays
a significant role in multibubble sonoluminescence (MBSL) where the tem-
peratures reached are significantly lower. MBSL is similar as a phenomenon
to SBSL but they are different in the number of bubbles and the stability
of SL, and even the corresponding spectra are different [6]. The significance
of shock waves to SBSL depends on the sphericity of the collapse and it
is assumed that shock waves are important in SBSL but probably not in
the more transient MBSL. Some papers also question the necessity of shock
waves for SBSL [7].

1.2 The Rayleigh-Plesset equation

Although the short 107 s phase where the bubble emits light still partly
remains a mystery the rest 4-1075 s of bubble dynamics during one cycle are



Figure 1: According to the most accepted model the sonoluminescence bub-
ble heats up in stages. In the first phase of the compression the bubble
heats up adiabatically (a—b). The supersonic implosion of the bubble walls
launches shock waves towards the bubble center. The shock front focuses
and heats the bubble interior further (c). In the last phase the bubble has
been compressed almost down to the solid core (van der Wals hard core).
The shock waves exploding outwards heat the bubble to temperatures of
tens of thousands of Kelvins, and the bubble emits a short burst of light in
the visible spectrum (d).

known to be well described by the non-linear Rayleigh-Plesset type equation
(1). The original formulation was made by Lord Rayleigh who studied the
deteoration of ship propellers on an assignment from the Royal Navy [8]. His
conclusion was that the deteoration was caused by small cavitating bubbles
on the propeller surfaces which could cause local pressure amplitudes of
nearly gigapascals. This equation, which is based on the well-known Navier-
Stokes equations of liquid dynamics, has later been refined with the effects
of liquid viscosity and surface tension.

1.3 Motivation for the special assignment

Traditionally SBSL has been created with a single sine wave as the driving
pressure function. However, theoretical studies suggest [9] that a nonlinear
driving pressure function would be better suited for driving the itself non-
linear motion of an SBSL bubble. At best, this could result in the increase
of luminosity of several hundreds of percents. It has also been proposed
that lowering the frequencies used in resonators could uspcale SBSL [10],
although some recent studies seem to prohibit such behaviour.

In this special assignment we will construct a program for numerically
solving the Rayleigh-Plesset type equation (1) with practically arbitrary
driving pressure functions and freely adjustable experimental parameters.



This is hoped to facilitate the ongoing experimental SBSL studies at the
laboratory and also to verify theoretically studies made on the subject of
boosting SBSL [9, 10]. The intensity of sonoluminescence is known to de-
pend on the violence of the collapse and the stability of the bubble. The
former is well reflected by the quotient of minimum radius to equilibrium
radius R/Ry and we shall use this property to optimize the driving pressure
function under the boundary condition of constant power. The stability of
the bubble is a matter of experimental parameters and very involved theo-
retical calculations, so it will be out of the scope of this assignment.

2 Numerical methods

2.1 Formulation of the R-P equation

Before we can start any numerical calculation of a differential equation we
have to write it into a proper form for the algorithms that we use. This is
usually a set of first order differential equations with the variables chosen in
an appropriate way. We shall start with the equation [11]
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which differs slightly from the original Rayleigh-Plesset formulation. Here R
is the bubble radius and R and R are the first and second time (t) derivatives,
respectively. p is the liquid density and c¢ the speed of sound in the liquid.
P, is the ambient pressure. The liquid pressure on the bubble surface P, can
be written [11] in the form
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where the effects of surface tension o and liquid viscosity 7 have been taken
into account. The finite volume of the gas molecules is accounted for through
the van der Wals equation of state, where a is the van der Wals hard core. For
adiabatic change pV" = const, with « the ratio of specific heats (adiabatic
constant) and Ry the equilibrium radius of the bubble. The respective total
time derivate now becomes
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The term —47)% depends explicitly on %IE and should therefore be moved

to the left-hand side of equation (7). To simplify following calculations %7



will be solved out explicitly and 14 henceforth defined without the last

dt
term marked with "*’. If we assume that the number of gas molecules in the
bubble remains constant during the collapse we can write for the smallest

possible radius [11]
Ry-23
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For the purposes of our numerical calculations the sound field pressure
(ambient pressure amplitude) P, will be given in the form of a finite sine

series
N

N
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which is easily derivated with respect to time. The square sum, or norm, for

A, is needed to keep the power of the pressure field constant. The equation

(1) is rewritten as a set of two first order differential equations
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The second term in the denominator comes from equation (3) when R is
solved out. Therefore % is defined in such a way that it has no explicit
dependence on R. For our algorithms we also need to solve analytically the

Jacobian matrix of the set differential equations (6,7)
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where F; and Fy are the right-hand sides of equations (6) and (7) respec-
tively.

The partial derivations are straight-forward but rather tedious opera-
tions, which result in the equations (9-22).
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where f and g are the numerator and denominator of the right-hand side of
equation (7) i.e. F». Note that Pj(R,t) doesn’t depend explicitly on time
whereas P,(0,t) does.

When the partial derivatives of f and g are evaluated we get
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Now, combining equations (2-22) we have a full description of the non-
linear differential equations needed for our program.

2.2 Fourier expansion of the pressure function

In the last subsection we saw that the pressure function P,(0,t), or ambi-
ent pressure amplitude, was chosen to be presented as a Fourier sine series
with a phase factor ¢,. The reasons for this were mainly practical: if the
pressure function and its time derivatives can be presented in a simple an-
alytical form, no numerical derivation will be needed and the computation
is generally faster. With a sufficiently large number of terms (say N =~ 200)
any reasonably well-behaved function can be presented as a Fourier series
with good accuracy. But more importantly, we will later need to expand
the pressure function in some basis for the purpose of optimization. For
this, Fourier sine series is as good as any and saves us the trouble of con-
verting the basis between the optimizer and the integrator routines. As



an additional bonus, comparison of the optimized pressure function to the
traditional choice, sin(wt), becomes very straightforward.
An arbitrary pressure function (in a vector form) can be expanded into
a Fourier sine series with N terms using discrete Fourier transform (DFT)
12], N
X(k) = 2N z(n)e2mik=D(=1/N 1 < | < N. (23)

The relationship between DFT and the Fourier coefficients a and b in
z(n) = ag + Elzjﬁa(k) cos(2mkt(n)/(Ndt)) + b(k) sin(2wkt(n)/(Ndt)) (24)

is

ap = X(1)/N,
a(k) = 2Re(X(k+1))/N,
b(k) = —2Im(X(k+1))/N, (25)

where z is a length N discrete signal sampled at times ¢ with spacing dt.
The Fourier series can be finally rewritten as a sine series using relation

sin(nt + ¢,) = sin(¢y,) cos(nz) + cos(¢py,) sin(nzx)
= aycos(nz) + by sin(nzx), (26)

which can be used to solve

On = arctan(Z—n). (27)

n

2.3 Numerical integration of stiff ODE’s

The major challenge in numerically integrating the set of ordinary differ-
ential equations (ODE’s) obtained in last subsection are the very different
time scales involved. The oscillations generally take place at time scales of
millisecons and speeds of few meters per second but near the collapse the
time scale reduces to nanoseconds and speeds exceed 1000 m/s. To obtain
numerically valid results (relative errors less than perhaps 0.1 %) with a
reasonable amount of computation time one needs an integrator capable of
reducing the step size near the time of collapse, taking longer steps where
possible.

ODE’s involving such drastic changes in their time behaviour are known
as stiff. The Numerical Recipes in C (NRC) [13] discusses several suit-
able algorithms, from which stiff and stifbs were chosen for experiment-
ing. Stiff uses a fourth order Rosenbrock method, which is a generalization
of the Runge-Kutta method with an embedded automatic stepsize adjust-
ment. The potentially faster method stifbs uses a semi-implicit extrapolation
method which is a modification of the Burlisch-Stoer method.



Both algorithms were tried out with realistic SL parameters, and it was
found that stifbs often failed in integration because it tried to calculate val-
ues with R < a, which leads to an error when 7 is not an integer (as it
generally isn’t), not to mention it being physically impossible. NRC states
that stifbs is intended smooth functions and is not particularly good for
differential equations with singular points inside the domain of integration.
Apparently the van der Wals hardcore R = a counts as one. On the other
hand, Runge-Kutta methods such as stiff with adaptive stepsize control
are known to do an excellent job in feeling their way through rocky and
discontinuous terrain. Therefore, stiff was chosen for the integration rou-
tine. For moderate accuracies (¢ < 10~* — 1075 in the error criterion) and
moderate-sized systems (N < 10) stiff is competitive with more complicated
algorithms like stifbs. With more stringent parameters stiff still remains re-
liable, merely becomes less efficient. The parameter set for stiff was chosen
to be that by Shampine, see [13] for other alternatives.

2.4 Optimization of the pressure function

Before we can start any optimization, we have to first decide what is the
goal of optimization and what are the parameters that can be changed.
In this case the goal would be more robust sonoluminescence. This itself
is difficult to determine since we can only use information about the time
dependence of the bubble radius so we need some auxiliary variable that
depends monotonically on the robustness of SL. Suitable variables could be
e.g. temperature at the time of collapse (for this we could use some equation
relating pressure and volume to temperature), the ratio Ry,q5/Rmin or the
ratio Rynin/Ro (@Rmin, when Ry = const). None of these can be used to di-
rectly determine the amount of increase in the intensity of SL unless we can
determine the exact relation between them and the robustness of SL. How-
ever, the requirement of monotonicity is enough to assure that optimization
gives the same point in parameter space as it would with optimizing the
intensity or robustness of SL. Following the example of earlier studies [9],
R,,in was chosen as the indicator of the most violent collapse, and thus, of
the most intense SL.

The parameter space is the pressure function itself. For a realistic pres-
sure function we can safely assume that the function is both continuous and
reasonably well-behaved. To reduce the amount of parameters to a manage-
able number we can expand the function as a sum in some suitably quickly
converging basis, taking only a finite number of terms. In this special as-
signment the basis was chosen to be a finite Fourier sine series

P,(t) = BN_| P, sin (nwt + ¢y,). (28)

This choice has the distinct advantage that the discrete Fourier transform
of the pressure function can be very easily calculated from the pressure



coefficients P, and phases ¢,. Also, the first term, sin(wt), is exactly the
pressure function used in perhaps 99% of SL experiments, and thus the
optimized results can be easily compared to reality.

Next, a suitable algorithm needs to be chosen. Requirements are that
the algorithm is preferably quick but more importantly, that it is able to
explore all the possible local minima in parameter space efficiently. Very
little is known about the shape of the objective function beforehand, so it is
difficult to make a guess about a reasonable starting point or the shape or
position of any local minima. For this reason, and relying on the experience
of other researchers [9], the algorithm amebsa [13] was chosen for the task.

Amebsa is essentially a heuristic algorithm based on simulated annealing.
It starts by randomly guessing N + 1 starting points, or vertices in the
simplex, where N is the number of parameters to be optimized. Values of
the objective function are calculated for each vertex. The vertices are then
approximately randomly moved in the parameter space, within a region
relative to the current temperature and the energy, or objective function
value, of the nearby points. To keep the power (3|P,|?) of the pressure
function constant, each P, is normalized by Py-%2_,|P,|? after every random
step.

To make a connection with thermodynamics, the simplex expands to a
size that can be reached at the current temperature, and then executes a
stochastic, tumbling Brownian motion within that region, sampling new,
approximately random, points as it does so. If the temperature is reduced
slowly enough, it becomes highly likely that the simplex will shrink into
the region containing the lowest relative minimum. This is exactly what
happens when liquids freeze and crystallize or metals slowly cool and anneal,
and what gives the name simulated annealing for the method.

The crucial point is in determining the suitable annealing schedule,
i.e. how long new points are sampled in a certain temperature and how
much temperature is reduced each time. Restarts, where one vertex is re-
placed by the best point encountered so far, can also have very positive
effect depending on the problem, although sometimes the effect can also be
slightly negative. The following four schedules [13] have been included in
the optimization program:

e Reduce T to (1-€)T after every m moves, where ¢/m is determined by
experiment.

e Budget a total of K moves, and reduce T after every m moves to a
value T' = Ty(1 — k/K)®, where k is the cumulative number of moves
thus far, and « is a constant, say 1, 2, or 4. The optimal value for
«a depends on the statistical distribution of relative minima of various
depths. Larger values of a spend more iterations at lower temperature.

o After every m moves, set T to 8 times fi — fp, where 3 is and exper-



imentally determined constant of order 1, f; is the smallest function
value currently represented in the simplex, and f; is the best func-
tion ever encountered. However, never reduce 7" by more than some
fraction v at a time.

The most commonly used schedule in this special assignment has been sched-
ule 1, reducing the temperature by a constant fraction, although other sched-
ules seem to give similar results.

3 Results

The computations in this special assignment were performed with a program
tailored for the job, Sonodiff. A more detailed description of the program or a
“user’s manual” is supplied as a separate appendix, including also listings of
the source code or references to the appropriate pages of Numerical Recipes
in C.

3.1 Inserting an arbitrary pressure function

The R-P equation was first solved numerically using a simple sine wave pres-
sure function and parameters listed in Table 1, see Fig. 2. Having obtained
both qualitatively and quantitatively reasonable results, the pressure func-
tion editor was next tested with square and triangle wavefunctions created
by Matlab, see Fig. 5 and Fig. 6, as well as with some other functions.
The Matlab functions were first Fourier transformed with Matlab’s discrete
Fourier transform (DFT) and typed in the editor. The editor calculated the
200-term Fourier sine series using equation 23. The qualitative results seem
to verify that the pressure function editor works properly.

3.2 Simple optimization tasks

The optimization algorithm was first used to reproduce results in earlier
articles [9] for bimodal driving: The R-P equations differ in some parts,
e.g. liquid compressibility is neglected in the model used in this assignment
and some parameters are slightly different. Fig. 7 and Fig. 8 show the
graphs drawn for the optimized bimodal driving and the pressure function
from literature, respectively, and with the same set of parameters (Table 1).
Fig. 3 shows the same graphs superimposed for easy comparison.

3.3 Higher modes of driving

Finally, the optimizing code was used to calculate higher orders of driving.
Figures 9 and 10 show 8-mode and 16-mode driving. A comparison of the
results with the corresponding pressure function can be seen in Fig. 4. It
should be noted that convergence in the pressure function with these higher
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Figure 2: R(t) curve obtained using the classical single mode driving.

modes was relatively weak because the code isn’t especially efficient at the
moment. As such, the number of iterations at each temperature had to be
limited to a quite small value (around 2NN), which is generally too small to
obtain good convergence to the optimum value. Nevertheless, each higher
mode showed results superior to the previous modes. Table 2 summarizes
the results for different modes of driving.

De

fault values

c=1.481-10° m/s

p = 1.000 - 10® kg/m?
w = 1.665 - 10°
P, = 1.350 - 10° Pa
Py = 1.000 - 10° Pa

o = 3.000 - 1072 kg/s?
Ry = 4.500-107% m
A=5175-10"m

v = 1.4000

n = 3.00- 1073 kg/ms

C
RHO
W
APA
PO
SG
RO
A
GM
ETA

Speed of sound in the liquid

Density of the liquid

Frequency of ambient pressure in rads, 26.5 kHz-27
Maximum value of ambient pressure, 1.35 bar
External pressure, 1 bar

Surface tension of the liquid

Equilibrium radius of the bubble

Van der Wals hard core, 2.3/20-Ry

Ratio of specific heats for a diatomic gas

Viscosity of the gas

Table 1: Values used for the experimental parameters.
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time [s] X107

Figure 3: Bimodal driving optimized using Sonodiff (solid) and with param-
eters from literature (dashed) [9] compared.

4 Summary

This special assignment focused on the numerical modeling and optimization
of the Rayleigh-Plesset equations that govern the behaviour of a sonolumi-
nescing or in general, cavitating bubble. We first rewrote the R-P equation
in the form that is the most compatible with most numerical algorithms, a
set of first order ordinary differential equations. Next, we wrote a program
that can integrate the set of (stiff) first order R-P equations using an adap-
tive stepsize control. The program was written to take all parameters and
the driving pressure function as input.

Heuristical optimization algorithms were then added to optimize the
bubble behaviour using a pressure function expanded as a Fourier sine series.
The program was first tested without optimization and using simple pressure
functions. Next, bimodal driving was optimized and the results compared
to ones obtained previously [9]. Finally, also higher modes of driving up to
16-mode were optimized.

5 Conclusion

This special assignment is hoped to facilitate the future sonoluminescence
projects at the Materials Physics Laboratory at the Helsinki University of
Technology. In previous projects at the laboratory we have established a
fully working close experimental sonoluminescence setup [14, 15, 16, 17, 18].
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time [s] -5

Figure 4: Results for single mode (dashed) and multimodal driving (bimodal
solid, eightmode dotted, sixteenmode solid) shown on the same scale.

Another parallel project has theoretically studied the dependence of the Mie
scattering intensity on the bubble radius [19]. It is hoped that these theo-
retical efforts will be soon combined with experiment to give us the ability
to study and control the time behaviour of the radius of a sonoluminescing
bubble.

Later experiments will hopefully reveal how well the approximations
made in the formulation of the R-P equation hold. It might be useful to
include the effects of finite liquid compressibility, shock wave formation and
shedding etc. to the model but this will be determined by experiment alone.
Later experimental progress will also show whether the optimized pressure
functions presented here will be feasible in reality.
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Optimization results

‘ Mode ‘ Ryin [pm] / |Rmaz| [m/s] ‘ n An,  bn ‘
singlemode 0.697 / 427 1 1, 0
bimodal 0.602 / 886 1. 0.8142, -2.110
(Sonodiff) 2: 0.5806, 3.107
bimodal [9] 0.610 / 812 1. 0.7894, 2.9042
2: 0.6139, 0.0000
1. 07302, 1.625
9. 0.5157, -2.287
3 01762, 2.326
eightmode 0.594 / 980 4: 0.2551, -0.7720
5 0.1065, 3.247
6: 0.1801, -0.07764
7: 0.05775, -1.899
8 0.2401, -0.3247
sixteenmode 0.592 / 1000

Table 2: Results for different modes of driving and the corresponding am-
plitudes and phases.
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Figure 6: R(t) and R(t) curves (solid) for sawtooth pressure function (dot-
ted).
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Optimized bimodal driving / Sonodiff
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Figure 7: Bimodal driving optimized using Sonodiff.

Optimized bimodal driving / literature
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Figure 8: Bimodal driving using pressure functio parameters from literature

[9].
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Optimized eightmode driving
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Figure 9: Eightmode driving.

Optimized sixteenmode driving
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Figure 10: Sixteenmode driving.
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